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Abstract. Ice crystals deform easily by dislocation glide on basal planes, which provides
only two independent easy slip systems. The necessary slip on other systems limits the strain
rate of polycrystalline ice. The preferred c axis orientation of ice from polar ice sheets
develops as a result of intracrystalline slip. An anisotropic viscoplastic self-consistent (VPSC)
approach is used for predicting texture development and mechanical behavior of
polycrystalline ice. Results are compared with lower and upper bound estimations. It is
assumed that ice crystals deform by basal, prismatic, and pyramidal slip. The resistance of
each slip system is determined from experimental data on monocrystals and isotropic
polycrystals. The VPSC model can predict the behavior of isotropic polycrystalline ice on
both the macroscopic and microscopic scale. This is not the case for the lower and upper
bounds. Fabrics simulated in uniaxial extension and compression are qualitatively similar for
all models. However, large differences in the rate of fabric development are found. This is
explained by the different interaction stiffness between grain and matrix. Fabric concentration
obtained with the VPSC model for uniaxial deformation is in close agreement with those
observed in polar ices. In simple shear, the single maximum fabric found in situ cannot be
reproduced without an extensive (and probably unrealistic) activity of nonbasal systems. The
preferential growth of grains well oriented for basal glide associated with rotation
recrystallization could be at the origin of the discrepancy between model results and natural
simple shear fabrics. Distorted grain shape is found to slightly slow down fabric development.

Introduction

The constitutive law of polycrystalline ice adopted for ice
sheet modeling is that of an incompressible, non linear,
isotropic, viscous fluid. The development of lattice preferred
orientations (fabrics) as ice is transported into the depths of
ice sheets has been revealed by the study of deep ice cores
from Antarctica and Greenland. Owing to the very large
anisotropy of ice crystals and the preponderance of
intracrystalline dislocation glide in polar ice [Pimienta and
Duval, 1987], initially isotropic ice near the surface becomes
anisotropic when fabric develops, exhibiting a different
viscous response to shear stress on different planes. Very
large variations of strain rates with the applied stress direction
have been found with both laboratory and in situ
measurements [Russell-Head and Budd, 1979; Duval and Le
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Gac, 1982; Gundestrup and Hansen, 1984; Shoji and
Langway, 1988; Budd and Jacka, 1989]. Such anisotropy
renders the isotropic model for polar ice inadequate for ice
sheet flow modeling.

Since fabrics develop with strain, the anisotropic
constitutive laws must be associated with a model giving the
evolution of lattice preferred orientations. Physically based
modeling of plastic deformation in polycrystals is the normal
way to simulate fabric development. In this paper we present
results from several homogenization methods. The
viscoplastic macroscopic response (i.e., of the polycrystal) is
calculated by averaging microscopic responses (i.e., of
grains). A microscopic constitutive relation is chosen, but the
form of the macroscopic constitutive relation is not known in
advance. The general assumption is that grains deform by
dislocation slip only, where different resistance is attributed
to each slip system. Deformation mechanisms such as
diffusional creep, grain boundary sliding, and climb of basal
dislocations [Duval et al., 1983; Lliboutry and Duval, 1985]
are not taken into account. Since polar ice deforms essentially
by dislocation glide in basal planes, the effects of these
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mechanisms are expected to be very small. Furthermore, the
elastic strain is neglected in the models; applications are thus
restricted to testing conditions for which the imposed strain
rate does not present a rapid evolution with time.

The first approach considers that the stress on each grain is
equal to the macroscopic stress applied to the aggregate
[Sachs, 1928]. This static approximation leads to a lower
bound for the stress (for a specified strain rate) on both the
local and global scale. The equilibrium condition within the
polycrystal is fully respected, and only the softest slip systems
are activated, since ice crystals exhibit a viscoplastic
response. However, the deformation is necessarily
incompatible.

Another simple theory was proposed by Taylor [1938] in
which the local deformation within the polycrystal is
homogeneous. Grains of different orientations deform at the
same rate. This assumption, which leads to an upper bound
for the stress [Kocks, 1970], assures the compatibility of
deformations but violates stress equilibrium across grain
boundaries. In order to produce any strain, activation of up to
five independent slip systems is necessary. This model is not
well adapted to strongly anisotropic materials. Principal
applications to geological materials were presented by
Hutchinson [1977], Wenk et al. [1986, 1989a, 1989b], and
Tomé et al. [1991].

A reasonable estimate of the macroscopic flow stress can
be obtained with the viscoplastic self-consistent (VPSC)
theory developed by Hutchinson [1976] and formulated in a
general framework by Molinari et al. [1987]. Within the
formulation of Molinari et al., stress and strain rate fields are
calculated in the polycrystal by solving stress equilibrium and
incompressibility equations. The whole polycrystal volume is
discretized into small-volume elements in which the stress
state is uniform. In the simplest form of the VPSC model,
these small-volume elements are the grains. Effects of nearest
neighbor interaction are not taken into account. Thus this
model consists in regarding each grain of the polycrystal as an
inclusion embedded in an infinite homogeneous equivalent
medium (HEM). The behavior of the HEM, which represents
that of the polycrystal, is not known in advance. This
treatment leads to an interaction equation that linearly relates
the deviations of local stress and strain rate with respect to the
macroscopic stress and strain rate of the HEM at infinity
(Figure 1). The stress and strain rate are different in each
grain and depend on the crystallographic orientation, the
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Figure 1. Calculation scheme of the VPSC model. Each
grain is considered as an inclusion in a homogeneous
equivalent medium (HEM), whose mechanical behavior is
that of the polycrystal.
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shape of the grain, and on the polycrystal behavior. This
theory, which represents a compromise between the lower
and upper bounds, has been adapted to isotropic materials by
Molinari et al. [1987] and has provided interesting results for
several geological materials [Wenk et al., 1989a, 1989b,
1991; Tomé et al., 1991]. A VPSC approach that explicitly
accounts for the plastic anisotropy of both the grains and the
matrix has been developed by Lebensohn and Tomé [1993].
This latter model has been applied to Zr alloys [Lebensohn
and Tomé, 1993; Lebensohn et al., 1994] and also to brass,
calcite, and uranium [Lebensohn and Tomé, 1994].

Several simple polycrystal models have been adapted to
the case of ice. A general assumption is that deformation
occurs by basal glide only. Azuma and Higashi [1985], Fujita
et al. [1987], Alley [1988], and Lipenkov et al. [1989] have
developed models for fabric development under uniaxial and
biaxial deformation, for which the expression of the
deformation of each grain results from a simple kinematic
condition. Azuma [1995] has proposed an anisotropic
constitutive law under uniaxial compression that takes into
account the interaction between adjacent grains. This nearest
neighbor interaction influences local stress and strain rate
[Becker and Panchanadeswaran, 1995] and texture
development [Canova et al., 1992] and should be taken into
account when rotation recrystallization is active. According to
Lliboutry and Duval [1985], the uniform stress
approximation is applicable to polar ice because
incompatibilities at grain boundaries can be relieved by the
grain boundary migration associated with dynamic
recrystallization. This lower bound has recently been applied
to fabric development in polar ice [Van der Veen and
Whillans, 1994; Castelnau and Duval, 1995]. The difficulty
inherent in this model is that at a given macroscopic stress,
the rate of basal glide in each grain is adjusted to reproduce
the response of an isotropic polycrystal. However, the
behavior of crystals must also be adjusted for anisotropic ice.
Consequently, the mechanical behavior of each grain is
dependent on fabrics.

In this paper we apply the anisotropic viscoplastic self-
consistent approach of Lebensohn and Tomé [1993] to fabric
development in ice, where effects of grain boundary
migration are not taken into account. Results are compared
with calculations based on the lower and upper bounds. After
a review of the deformation processes in ice, and a
description of the models, we determine the resistance of
each slip system from experimental data on monocrystals and
isotropic polycrystals. Afterward, we compare fabric
development based on these theories with fabrics observed in
deep polar ices and obtained experimentally. Application to
the rheology of polar ices is also discussed. With the self-
consistent model, emphasis is laid on the parametrization of
the grain-matrix interaction, i.e., on the possibility of
imposing more or less stringent kinematic conditions on
grains.

Deformation Processes of Monocrystalline
and Polycrystalline Ice

The main feature of the plasticity of ice crystals is its
outstanding anisotropy. For shear stresses of the order of 0.1
MPa, such as those found in active glaciers, ice deforms by
basal slip. As was shown by Duval et al. [1983], the
resistance to shear on nonbasal planes is large and can be 60
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times higher than that on the basal plane. Basal slip is caused
by the glide motion of 1/3 <1120> dislocations. Very clear
parallel slip lines can be observed across the crystal. Among
several possibilities of nonbasal slip, the rapid glide of
nonbasal edge dislocations on (1700) prismatic planes was
observed by X ray topography, using a high-power generator
[Higashi et al., 1985; Ahmad and Whitworth, 1988]. But, the
rapid movement of short edge segments is trailing long screw
dislocations which are dissociated on the basal plane
[(Hondoh et al., 1990]. Therefore these basal dislocations
cannot move on prismatic planes. The prismatic slip provides
a mechanism for the generation of dislocations on the basal
slip system, but it does not significantly contribute to the
deformation of ice crystals [Hondoh et al., 1990; Shearwood
and Whitworth, 1993]. Other nonbasal slip systems were
proposed by Fukuda et al. [1987] and Wei and Dempsey
[1994].

During a mechanical test on a monocrystal with a constant
strain rate, the stress-strain curve, after an initial yield drop
caused by dislocation multiplication, becomes horizontal with
no sign of work hardening up to 20% strain. Creep data for
single crystals are shown in Figure 2. Almost all authors
report a stress exponent for basal glide of 2+0.2, and an
activation energy close to 63 kJ mol™ [Duval et al., 1983].
The value of the stress exponent may be explained by the
linear variation of both the number of dislocation sources and
the velocity of dislocations with stress. When ice crystals are
loaded so that there is no resolved shear stress on the basal

1E-2 b toiov il L6 iiaidd [N R e
s
1E-3 — 4 -
nba.ral=2
1E-4 — =
basal slip
1E-5 — L
P':'L’
L2 1E-6 - N=3 =
&
= S A S +
£ 1B o -
@ v
§ hon-basal
,::'2 1E-§ - -
&
23}
1E-9 - =
1E-10 -
< ’
-
1E-11 -
15-!2 T TTITTTTT ~T T T 'rﬁ—T’TTTL
1E-2 1E-1 1E+0 1E+1

Equivalent Deviatoric Stress (MPa}

Figure 2. Steady creep behavior at -10°C of single crystals,
deformed by basal or nonbasal slip, and of isotropic
polycrystals. Data for single crystals and for polycrystals
corresponding to N=3 are from Duval et al. [1983]. Data for
polycrystal at lower stresses are from Duval and Castelnau
[1995].
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plane, the creep rate is at least 4 orders of magnitude lower, at
a given stress, than that for basal glide. Thus the creep rate is
so small that it is doubtful that it was measured accurately.
The corresponding data points are shown with arrows to
indicate that they represent only a lower bound for the stress
or an upper bound for the strain rate.

Creep data for isotropic polycrystalline ice are also given
in Figure 2. They concern the minimum creep rate reached
after a strain of about 1%. During the primary creep, strain
rate decreases by more than 3 orders of magnitude [Jacka,
1984]. On first loading, the stress state within polycrystalline
ice is almost uniform. However, owing to the very large
plastic anisotropy of ice crystals, the resolved stress on the
basal plane on each grain relaxes, and the load is transferred
to the harder systems. As a result, an increasingly nonuniform
state of internal stress develops. According to Hutchinson
[1977], extensive plasticity of polycrystalline ice is possible
with only four independent slip systems if no accomodation
processes are activated. Basal slip provides two independent
systems. Shear on nonbasal planes or the climb of
dislocations on prismatic planes gives two additional
independent systems [Duval et al., 1983].

At high deviatoric stresses (higher than 0.2 MPa), the
stress exponent for the polycrystal is close to 3. Nonbasal
glide or climb of basal dislocations should control the strain
rate. For conditions prevailing in ice sheets (stress smaller
than 0.2 MPa), some laboratory and field observations
support a stress exponent smaller than 2 [Doake and Wolff,
1985; Pimienta and Duval, 1987]. However, this result is the
subject of discussions from several years [Hooke, 1981; Budd
and Jacka, 1989]. On the other hand, diffusional creep cannot
be invoked for polar ice; it yields a viscosity much higher
than that deduced from both laboratory and in situ
measurements and cannot be at the origin of fabrics observed
in polar ice sheets. Since twinning is not observed,
intracrystalline  dislocation creep remains the main
deformation mechanism in polycrystalline ice as long as grain
size is larger than 1 mm. A sort of Harper-Dorn creep has
been proposed by Lliboutry and Duval [1985] and Wang
[1994] that could explain the quasi-Newtonian viscosity
observed at very low stresses.

In polar ice sheets the deformation of ice is associated with
three different recrystallization mechanisms. “Grain growth”
driven by grain boundary energy is observed from the surface
down to a depth of several hundred meters in the central parts
of ice sheets. At -53°C the grain boundary migration rate is
about 2x1077m2s™!. Coarse and interlocking grains are
found in warm ice near the bedrock in Antarctica. This
texture is a direct consequence of the high velocity of grain
boundary migration (of about 107!'mZs! at -10°C)
associated with “migration recrystallization” [Pimienta and
Duval, 1989]. In situ data indicate that this recrystallization
mechanism occurs only above a critical temperature close to -
12°C. Between these two zones, new grains are found during
progressive misorientation of subboundaries. Grain boundary
migration is driven by both grain boundary and strain
energies. As a result, grain size does not change significantly
with depth, as was shown by Alley et al. [1995] for the Byrd
core. This recrystallization regime is termed "rotation
recrystallization" by Guillopé and Poirier [1979] and is
associated with a low-velocity grain boundary migration
[Duval and Castelnau, 1995]. The Harper-Dorn creep with a
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Newtonian viscosity is expected at low stresses, when grain
boundary migration associated with grain growth
accommodates basal glide and thus impedes strain hardening.
The role of these recrystallization processes in the
development of lattice preferred orientations will be
discussed later in connection with our numerical results.

Description of the Models

In this paper, tensors describing microscopic and
macroscopic states are indicated by lowercase and capital
boldface letters (a and A), respectively. Vectors are not
underlined (a), second-order tensors are underlined once (a ),
and fourth-order tensors twice (a). Tensorial, once
contracted, and twice contracted products are indicated by
circled cross (® ), dot (.), and colon (:), respectively. We get,
for instance, for second-order tensors

C A®B<=}Ckl— Bkl

Q=A.B_¢?Clk --A Bjk

with the Einstein summation convention on repeated indices.

At grain level, the shear rate of a slip system s is taken as a
function of the local deviatoric Cauchy stress tensor s
[Hutchinson, 1976]:

S
n*-1 s,

M

T

where 7, is a reference shear rate, and n’, 1§ and 15 are
respectively the inverse of the rate sensitivity factor, the
resolved shear stress (RSS), and the reference resolved shear
stress (RRSS) associated with system s. The Schmid tensor r’
expresses the orientation of the slip system s relative to the
Macroscopic axes:

rf =%(n" ®b* +b°®n’), @

where n* and b’, which characterize the system s, denote the
unit vector normal to the slip plane and the unit vector
parallel to the Burger vector, respectively.

The constitutive law of a single crystal, which expresses its
strain rate d, is given by a sum over all S slip systems:

S 5, n¥-1 s,
d=7 2: —| LS 3)
T

We call S the macroscopic deviatoric Cauchy stress tensor
and L the imposed macroscopic velocity gradient. The
macroscopic strain rate and rotation rate tensors (noted D
and W respectively) are defined as

=@+LH/2, W=C-LH/2. ®
Here, L" designates the transposed tensor of L .

With the microscopic constitutive relation (3), the
crystallographic orientations (i.e., all r' tensors), and the
velocity gradient L on the polycrystal scale known, the
difficulty of the problem lies in the calculation of a
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microscopic state (s, d ) for each grain, where its polycrystal
volume average (denoted by angle brackets) determines the
response of the polycrystal:

>=8, ®

m

A
(=%

=D. (6)

Then a relation linking microscopic state (s, d) and
macroscopic state (S, D) must be introduced. In order to
find such a micro-macro relation, which completely
determines the response of the polycrystal, some assumptions
must be made. In doing this, we use the static, Taylor, and
VPSC models.

Within the static approximation, macroscopic and
microscopic stress tensors are assumed to be equal:

s=S. @)

r':S s r':S
o et ®)
T T

On the other hand, within the Taylor approximation, a strict
uniformity of the velocity gradient is imposed, i.e.,

1=L, )
and equation (3) becomes
= S, Ir's w-l r's
D=7,y r'l=== ==. (10)
s=1 To To

Both approximations lead to a nonlinear system of equations,
which is easily solved with the classical Newton-Raphson
iterative method. In this way, the microscopic state (s, d)
can be calculated for any value of the imposed velocity
gradient L .

Within the VPSC approach, the microscopic states differ
from the macroscopic state at any location within the
polycrystal. In what follows, we present only the main
equations in a general way (for further details, see Lebensohn
and Tomé [1993]). Within this model, the constitutive
equation (3) is rewritten in a pseudo-linear form,

n* -1

S S®r
Z

s=1 0

d={y

an

s=m*9(g):s,
TO -

where m®® is the secant compliance that gives the

mstantaneous relation between stress and strain rate. Except
when n®=1 for all systems, m*® depends on the applied
stress, and the validity of relation (11) is limited to the precise
point (s, d) that describes the grain state. This relation can
be approximated by a linear form in the vicinity of the stress
state s The tangent compliance m"® and the back
extrapolated term d’ are defined by the first-order Taylor
expansion of (3):

d=m"® ()5 +d°(s) (12)
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with

od;;
(Ig) ’”N — Y ’
myg () =——(s). (13)
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At the macroscopic level, the polycrystal response can be

characterized by constitutive equations similar to (12) and
(13). It is given by a secant relationship

D = M®(S):S (14)
and a tangent relationship in the vicinity of S,
D=M®E):5+D°®). (15)
Secant and tangent compliance are linked by
M E) = NME ) (16)

where N is the macroscopic stress exponent.

Within the VPSC approach, a homogeneous equivalent
medium is considered, whose behavior is identical to that of
the whole polycrystal. This HEM is infinite by hypothesis.
M and D" are taken as frozen to the values M*®(S) and
D°(S) in the HEM. Thus L, D and S define velocity gradient,
deformation rate, and deviatoric stress inside the HEM, at a
given location. L, D, and S correspond to the same
quantities infinitely far from this location.

As a simplification, the so-called "one-site" approximation
is used within the formulation of Lebensohn and Tomé
[1993]. The calculation of stress and deformation rate of a
grain does not take into account the influence of neighboring
grains. However, a significant influence of neighboring grains
has been observed in experimentally deformed dolomite
[Barber et al., 1994] and ice [Azuma, 1995]. This one-site
approximation does not then permit the evaluation of vicinity
effects but should remain valid for average predictions. Thus
each grain is considered successively as an inclusion in the
HEM, whose behavior is given by equation (15), and
submitted to the uniform velocity gradient L at infinity. This
interaction problem is solved using the inclusion problem
formalism [Eshelby, 1957; Hill, 1965]. Since grain shape is
assumed to be ellipsoidal and the HEM to have a linear
(tangent) behavior, a uniform strain rate d and uniform stress
s develop in each grain. Therefore the microscopic
constitutive equation (12) can be rewritten

d=m®(5):s+d°(s) . a7
The Eshelby solution of the viscoplastic inclusion problem
leads to the interaction equation

d-D=-M:(s-9S), (18)
where the interaction tensor & is defined as
M = (1-SEh)~1.gEsh. M (®) (19)

In (19), I is the fourth-rank identity tensor for symmetrical
tensors, and S™" is the viscoplastic Eshelby tensor
[Lebensohn and Tomé, 1993], a function of the tangent
viscoplastic compliance M“® and of the shape of the
inclusion. In addition, the behavior of grains appears in (18)
only implicitly via the constitutive equation (11) relating s
and d . However, the viscoplastic compliance is not known in
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advance. Therefore a self-consistent expression from which
M(S“) can be calculated must be found. Condition (6) is
rewritten, together with the secant relations (11) and (14) and
the interaction equaticn (18):

M =< m©):B > (20)
where the accommodation tensor g is defined as
B:S=s. @1

Concerning the first-order Taylor development of the
macroscopic constitutive relation, it is important to note that
(15) is exact only when it describes the strain rate associated
to the stress S used as reference for the expansion, or when
(14) is linear (i.e., for N=1). Otherwise, it is only
approximate. A limitation of the tangent formulation appears
then when (15) is used to estimate the response of the HEM
in the vicinity of the inclusion, where local variation of strain
rate and stress takes place. This variation has to be within the
interval where the tangent approximation is assumed to be
adequate. However, at a given value of the stress deviation
§—S near the inclusion, the error in the value of the strain
rate calculated with the tangent approximation (15) increases
exponentially with the stress exponent N. The application of
the VPSC model to zirconium alloy [Lebensohn and Tomé,
1993] shows that the tangent approximation is valid for
values of N smaller than 20. The anisotropy of ice crystals is
very large, but the stress exponent of polycrystalline ice is
close to 1 (1< N <£3). Thus the tangent approximation must
also be valid in our case.

Within the formulation of this VPSC model, the
interaction tensor M and the macroscopic compliance M“®
are fully determined. This allows this HEM to have any
anisotropic response.

Once convergence is achieved, the rotation rate w° of
crystallographic axes, which determines the fabric evolution,
is calculated for each grain. It is expressed for the VPSC
model as
we=Wi+w-wP.

w 22)
The rotation rate w® of the associated ellipsoid and the plastic
rotation rate w” are given respectively by

-1 —_—
L | e (8 1) @3)

S
wP = Z%(ns ®b® —b° ®n*)j*, 24)

s=1

where g_ESh denotes the skew-symmetric Eshelby rotation

tensor [Lebensohn and Tomé, 1993]. The influence of the

term w° increases with the anisotropy of the HEM and with

the distortion of the grain shape. Within the Taylor

approximation, w° vanishes, and w° is given by
C

w'=W-wP (25)

This latter relation (25) is also used for the static model. This
implies implicitly that the local rotation rate is equal to the
macroscopic rotation rate W . Thus the static model is
incoherent in the way in which a compatibility condition is
imposed on the rotation, but not on the deformation.
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In this paper, we use Von Mises equivalent deviatoric
stress S, and strain rate D, as an average measure of the

deviatoric stress and strain rate:

- 3<T
Seq = rL

S, D,

= %ﬁﬁ . (26)

Deformations are computed in extension, compression, and
simple shear. The imposed velocity gradients are constant.
They are given respectively by (in units of reciprocal seconds)

10 o
L=|0 -05
[0 0
(05 0
L=|0 05
LO 0
0 0 V3
L=|0 0 ©
00 0

0
0 @27
-05
0
0 (28)
-10

29

so that D,,=1.0 s™* for each deformation case.

Large imposed deformations are decomposed into a sum of
small deformation steps (increments), during which all
quantities are assumed to remain constant. Time step dr* is
chosen so that each deformation step k leads to a 1%
equivalent strain for the polycrystal:

sk _ Tk gk —
€eq = Deq-dt™ =

1

_ 0
100 G0

The total (cumulative) equivalent deformation is the sum over

all K deformation steps

&k
= zecq = e—
k=1

and represents only a measure
transformation gradient tensor

K

31
100 €2y}
of the deformation. The
F* for the polycrystal

corresponding to the deformation step k is given by

F =exp(dr*.L),

(32)

where the exponential function is defined, for second-order

tensors, by the relation

exp(A) = 1+A+é——+.‘..+5A=—-+.... .
2! n!

2 n
(33)

The total transformation gradient tensor E is calculated with

F=FF°,

(34
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where F° is the total transformation gradient of the
polycrystal at step k-1. Therefore when velocity gradient and
time step are constant, F is linked to E’eq by the relation

— €og —
F=exp =2L|.
Deq

Within the following applications, polycrystals are made up
of 200 grains, and the value of the reference strain rate 7y, is
taken to be unity (1.0 s° ) Since five independent slip
systems can be needed, the ice crystal is supposed to deform
by dislocation glide on basal, prismatic and pyramidal planes.
Slip systems are summarized in Table 1. The pyramidal
system is that proposed by Hutchinson [1977] and Duval et
al. [1983]. Taking the unit vector ez of the reference frame
parallel to the c¢ axis of the crystal, dislocation motion on
basal planes gives the deformations €3 and €53, on
prismatic planes €, €5, and €, , and on pyramidal planes
€)1, €3, £33, €33, €13, and £, . Thus basal and prismatic
slips produce only distinct deformations. If pyramidal slip is
omitted, axial deformation along the c axis is impossible.
Before deformation, grains are supposed equiaxed (spherical
shape). As deformation proceeds, grain shape is updated with
respect to the macroscopic (average) velocity gradient. Thus
all grains exhibit the same shape, regardless of their
individual deformation.

(35)

Modeling Behavior of Isotropic Polycrystalline
Ice

Within all the models described previously, the RRSS of
each slip system is the only tuning parameter. The aim of this
section is to estimate the RRSS of basal, prismatic, and
pyramidal systems, in order to reproduce the behavior of the
isotropic polycrystalline ice determined experimentally.

The creep behavior of an isotropic ice polycrystal is well
described by the Norton-Hoff constitutive law [Duval, 1976],
usually used in glaciology:

D, = B4

N-13

(36)

where By is a scalar, and where the effective shear stress T is
defined as

1

2 <2
35

—S:S= 37
2
This law can be rewritten, without a loss of generality, as a
function of Von Mises equivalent stress and strain rate

[Hutchinson, 1976]:

o~

D;;

ij (38)

3
2

hI

Table 1. Slip Systems, Total Number of Systems in Each Family, Strains Given by Dislocation

Motion, Stress Exponent n*

, and Reference Resolved Shear Stress

Slip Systems Number of Systems Resulting Deformation n? RRSS
Basal {0001}<11 120> 3 €13, €23 3 T
Prismatic {01 10}<21 10> 3 €11, €22, €12 3 Tp
Pyramidal {1122}<1123> 6 £n1, €22, €33, €23, €13, £12 3 T,
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with

(39)
00

= \N
5 . Seq
eq ~ Yo .
For a complete equivalence of both expressions, a relation
linking the macroscopic reference equivalent stress ¢, with
Bg must be added:

N+l
E]
o o O'ON :

(40)

We restrict this study to the stress domain where the value of
the stress exponent for polycrystalline ice is N=3 (i.e., for
Se> 0.2 MPa). In this domain the flow law coefficient By
and the reference stress o, can be determined from creep
data (Figure 2). At -10°C:

B,=11x10°MPa3s™! ©,=200MPa .  (41)
Owing to the dispersion of experimental points, the value of
G, is precise at about +30% .

Now let t,, T,, and T_. denote the RRSS of basal,
prismatic, and pyramidal slip systems respectively (Table 1).
Basal plane presents three glide directions, each of them
forming a 120° angle with respect to the others. From
equation (3), the plastic anisotroEz on the basal plane can be
assumed, except for n™“=1 or n™*=3. But this anisotropy is
very weak for 1< n"<4, and the deviation between the
direction of the applied shear stress on the basal plane and the
glide direction does not exceed 2.9° [Kamb, 1961]. When a
monocrystal is sheared on the basal plane so that the direction
of the shear stress is aligned exactly in the direction of an a
axis, equation (3) can be rewritten as the following
expression, when only basal slip is taken into account:

basal nhasal

1
d =4 1+ =
o Yo 3nhasal+l [ 2nbasal ) T,

The stress exponent N of the polycrystal depends on the rate
sensitivity of each slip system. The value n”*=2 has been
found experimentally for an isolated single crystal. Since a
grain boundary cannot produce (and absorb) dislocations in a
similar way to a free surface, a different value of a4 s
expected for a grain embedded within a polycrystal. In this
study we take n'=3 for each system. As a result, we get N=3.
The top curve of Figure 2 together with (42) gives, for

Seg =1 MPa and n"™*'=3,

42)

1,=11MPa. 43)

Similarly, from data on the nonbasal creep behavior of
monocrystals, lower bounds for T; and T, can be obtained:

T, 2277, T.2397,. 44)
We get then, from relations (41) and (43),
o,/t, =18. (45)

For a given strain rate, 6,/T, expresses the ratio between
the viscosity of isotropic ice and the viscosity of a single
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crystal deformed by basal glide. Note that this value of 18
was obtained from mechanical tests only and is therefore
entirely independent of polycrystal models.

Let us now compare the results given above, resulting
from mechanical tests, with those obtained from static,
Taylor, and VPSC approximations. Figure 3a shows the
evolution of G, /1, against values of the RRSS of nonbasal
systems relative to T, , when the resistance for prismatic and
pyramidal systems are equal (T, =7.). The deviation
between polycrystal models becomes large with low values of
T, /7, . When dislocation glide is entirely suppressed on
prismatic and pyramidal planes, i.e., for T, =1, =00, the
upper bound estimate of o,/7t, is unbounded; overall
deformation cannot occur when slip takes place only on basal
planes. On the other hand, the maximal values obtained with
the VPSC and the lower bound estimates are 6, /71,=33 and
C,/7,=3.2 respectively. This latter value is too low
compared with that given in (45). Thus the static model
cannot describe the behavior of polycrystalline ice.

From Figure 3b the corresponding relative activity of basal
systems, defined as the relative contribution of basal slip to
the total (macroscopic) deformation, increases with
decreasing values of t,/1,. When 1,=1,.>107,, basal
slip contributes more than 99% to the total deformation with
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Figure 3. Response of a randomly oriented polycrystal
(isotropic), as a function of the relative hardness 1,/1, of
prismatic and pyramidal glide systems, with 1, =1,. (a)
Ratio between reference stresses, ©,/7,. (b) Relative
activity of basal slip.
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the lower bound and more than 70% with the VSPC
approach.

With the VPSC approximation, stress and deformation
states are not homogeneous within the polycrystal. This
model gives an intermediate solution, between that of the
lower and upper bound, for both the activity of basal systems
and the polycrystal rheology. As with the Taylor model, the
viscosity of an isotropic polycrystal becomes large when both
prismatic and pyramidal slips are suppressed. The evolution
of basal activity against 1, /7T, is, however, quite close to
that given by the static model. For T, =1, > 1007, ,basal slip
contributes more than 99% to the total deformation, but the
viscosity of the polycrystal remains controlled by the large
RRSS of nonbasal systems.

Both VPSC and Taylor models are able to reproduce the
viscosity of isotropic polycrystalline ice. The experimental
value o,/1,=18 is found with 1, =1,=207, for the
VPSC model and 71,=71,.=121, for the Taylor model
(Figure 3a). From the experimental values given in (44), the
VSPC model seems to be more suitable than the Taylor
approach. This is confirmed by results on the activity of basal
systems given in Figure 3b. Indeed, the Taylor model predicts
that about 60% of the total deformation is due to dislocation
glide on nonbasal systems. This estimation is not realistic,
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Figure 4. Response of a randomly oriented polycrystal

(isotropic), as a function of the relative hardness t,/7t, of
the pyramidal systems, with t,=207,. (a) Ratio between
reference stresses, G,/7,. (b) Relative activity of slip
systems for Taylor and VPSC models.
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since the major part of dislocations observed in ice crystals
lies in the basal planes [Higashi et al., 1985; Ahmad and
Whitworth, 1988].

Figure 4 shows the response of an isotropic polycrystal,
but now with 1, =201,, and for increasing values of the
RRSS of pyramidal slip systems relative to the value of the
prismatic RRSS. The limit T, = corresponds to the case
where only basal and prismatic slip are allowed. In that case
the predicted viscosity is infinite with the upper bound. The
basal system never contributes more than 40% to the total
deformation (Figure 4b). A different behavior is found with
the VPSC model. The ratio o,/71, does not significantly
change with 1, /7, and is close to the experimental value.
The resistance ratio between prismatic and basal systems is
therefore close to 20, i.e., a value compatible with creep data
on monocrystals (equation (44)). Therefore calculations based
on the VSPC method show that the viscoplasticity of
polycrystalline ice can be described by invoking only basal
and prismatic slip. Overall compatibility is possible without
axial deformation along the ¢ axis, since only pyramidal slip
can produce such a deformation. From Figure 4b the activity
of prismatic systems is not more than 10%. However, this
system fully controls the viscosity of the polycrystal.

Now, we will take for all the following calculations

T _ T

T 46
420 200 (46)

so that the self-consistent model exactly reproduces the
behavior of an isotropic polycrystal and so that pyramidal slip
is minimized. Macroscopic reference axial stresses o, are
given by
static Taylor
o c G,V

= = ) @7

VPSC
(0] (V]
32 205 117

Ty =

In order to determine the state of each grain, a uniaxial
deformation test was performed on an isotropic polycrystal.
In Figure 5 we have plotted the relative activities found with
the self-consistent theory against the angle ¢ between each ¢
axis and the direction of uniaxial deformation. It appears that
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Figure_ 6. (a) Normalized equivalent stress and (b) normalized equivalent strain rate in each grain of an
isotropic polycrystal deformed in uniaxial compression. Here, ¢ is the angle between the ¢ axis and the
direction of uniaxial compression. Results of the VPSC model.

the deformation of grains corresponding to 5°< ¢ <50° is
possible with less than 5% activity of nonbasal systems. For
larger values of ¢ a significant activation of prismatic
systems is necessary, but overall compatibility is possible
without pyramidal slip. The activity of pyramidal systems is
larger than 1% only for @ <5°. A maximal value of 15% is
found for ¢ = 0°, i.e., when the c axes are precisely aligned
with the direction of uniaxial deformation. Similarly, Figure 6
gives normalized equivalent stress and strain rate in each
grain, predicted by static, VPSC, and Taylor models. The
lower bound gives a maximum strain rate at ¢ =45°. The
stress obtained with the Taylor model is found at its
minimum at about 55°. The self-consistent theory predicts an
intermediate behavior, with a minimum stress and a
maximum strain rate at ¢ = 45°. Note that the large strain rate
deviation obtained with this model is comparable to that
obtained with the static model.

In the previous section, static, VPSC, and Taylor models
are described separately. However, a direct comparison is
possible when an interaction coefficient o is introduced in
(18):

d-D=-aM:(s-8§) 43)
where « is a positive scalar quantity. This term expresses the
interaction stiffness between grain and matrix. For polar ice it
could represent the accomodation processes, i.e., the effects
of grain boundary migration. Of course, oo =1 leads to the
VPSC estimation. The theoretical limit o = e corresponds to
the static model (infinitely soft interaction), and o =0
correponds to the Taylor model (infinitely hard interaction).
Numerically, a difference of less than 1% between values of
0, /71, calculated with real static and Taylor models (i.e.,
equations (8) and (10)) and values calculated with (48), is
found for o> 100 and o < 0.01, respectively (Figure 7). Thus
both static and Taylor approximations can be considered as
extreme solutions of the viscoplastic inclusion problem.
Since (48) is the only relation linking microscopic and

macroscopic states within the VPSC model, a continuous
variation of the polycrystal response, from uniform strain to
uniform stress, is found by tuning this interaction coefficient
o. From Figure 7, the sensitivity to o of the polycrystal
response G, /T, is the largest for the self-consistent
estimate.

Fabric Development
Simulation

Figure 8 displays ¢ axis fabric diagrams obtained in
uniaxial extension, uniaxial compression, and simple shear,
after 0.4 equivalent strain, and where the initial polycrystal
was randomly oriented (i.e., isotropic). Since the self-
consistent model permits us to account for variations in the
grain shape with strain, simulations were performed both with
and without evolution of the grain shape, i.e., with an

1E+‘3 ,E,___L WU SRR jemd ALY 1 |‘|||||:
(B+2 4 L
« ] ) s
[ [
bO
1E+1 3 E
] S~
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Figure 7. Influence of the interaction coefficient o on the
strengh of an isotropic polycrystal.
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Figure 8. Diagrams of ¢ axis fabric simulated with the static, VPSC (constant spherical grain shape and
evolutive ellipsoidal grain shape), and Taylor models: (a) Uniaxial extension. (b) Uniaxial compression. (c)
Simple shear. Here, €, = 0.4. The initial polycrystal was randomly oriented. Equal-area projection. Arrows

denote the direction of deformation.

evolutive ellipsoidal and a constant spherical grain shape
(denoted VPSC ellipsoidal and VPSC spherical, respectively).

Qualitatively, all models predict the same fabric pattern. In
uniaxial extension we found a concentration of ¢ axes around
the plane normal to the direction of extension. In uniaxial
compression a single maximum fabric develops, where c axes
rotate toward the direction of maximal compression.
Nevertheless, in simple shear we found a single maximum
fabric, but this maximum lies between the normal to the
macroscopic shear plane and the principal direction of
compression.

Large differences between all models appear in the

preferential orientation of ¢ axes for the same equivalent
strain of 0.4. We get extremely concentrated fabrics with the
static model and very slightly pronounced ones with the
Taylor model. Predictions from the VPSC model lie between
the two of them but depend on the evolution of grain shape.
Fabrics obtained with evolutive grain shape are less
concentrated than those obtained with constant spherical
shape.
Orientation changes are directly linked to slip system activity.
In Figure 9 we have plotted the number of active slip systems
against equivalent strain. In viscoplastic deformation
modeling, mathematically all systems are active, but some
contribute only a very small amount to the total strain.

In each grain we consider a slip system as active if its
contribution to the total shear of the grain is more than 5% of
that of the most active system. The average number of slip

systems is calculated for the whole polycrystal, where the
number of active systems in each grain is weighted by the
total shear of this grain.

In uniaxial extension and compression, stable values
around 2.3 and 9.5 are found with static and Taylor models,
respectively. Results from the VPSC model present much
larger variations, especially in compression with spherical
grains, where a maximal value of about 7 is found for a strain
between 0.7 and 0.8. In extension, no more than four systems
are activated, and we get decreasing values after 0.5
equivalent strain. Generally speaking, the number of active
systems is more constant with distorted grain shapes.

A more detailed analysis can be made by considering the
relative activity of all slip systems, as shown in Figure 10.
Diagrams for the static model have not been plotted, since the
relative contribution of nonbasal systems always represents
less than 1%.

In extension, results obtained with the self-consistent
model with and without grain shape change are qualitatively
similar. The basal slip activity is decreasing continually and is
progressively replaced by prismatic slip. In compression with
spherical grains, basal activity presents first a quasi-steady
stage, during which the fabric becomes very concentrated, as
is shown in Figure 8. Afterward, basal slip decreases and is
replaced by pyramidal slip, which attains considerable
activity. With evolutive grain shape, basal slip retains a very
large activity, and pyramidal slip is activated only after an
equivalent strain of 0.8. Nevertheless, the same kinds of
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Figure 9. Number of active slip systems versus equivalent
strain, for deformations in (a) uniaxial extension, (b) uniaxial
compression, and (c) simple shear. The initial polycrystal was
randomly oriented. Results of the static model have not been
plotted for strain larger than 0.4 and 0.6, since extremely
prononced textures appear.

fabrics are observed for uniaxial extension and compression,
with ¢ axes aligned toward the principal direction(s) of
compression.

As was discussed in the previous section, a uniform strain
rate field in the polycrystal can be reached only with an
extensive activity of nonbasal systems. Therefore since the
activity predicted with the Taylor model presents an evolution
similar to that of the VPSC model, variations are smoother,
and no system really predominates for strain as large as 1.0.
Note that an increasing nonbasal activity slows down the
rotation rate of c¢ axes, but does not influence the character of
final fabrics. Indeed, even with a large activity of nonbasal
systems (as obtained with Taylor and VPSC models), patterns
of final fabrics are similar to those found with the static
model, where only basal systems are activated.
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In simple shear, two mechanisms are in competition for
fabric development: rotation of the ¢ axes toward the
principal direction of compression, and dragging of the fabric
maximum by the macroscopic rotation. Fabrics obtained with
VPSC and Taylor models. for an equivalent strain of 0.4
(Figure 8) are not stable: the maximum continues to turn
slowly toward the normal to the macroscopic shear plane as
deformation proceeds (Figure 11). At an equivalent strain of
5, the deviation between this normal orientation and the
fabric maximum is about 5°. However, a stable fabric is
reached with the lower bound at an equivalent strain of only
0.5. With this model, a much larger deviation (30°) is
obtained.

At 0.4 equivalent strain, most grains are oriented for hard
glide deformation. With the self-consistent approach,
prismatic systems are significantly activated. At this stage, the
deformation is possible without axial deformation along the ¢
axis (Figures 9 and 10). Pyramidal slip occurs only for larger
deformation. On the other hand, results from the upper bound
show quasi constant activities for each system, which are all
about 30%. With the static model, only basal systems are
activated, and basal planes are inclined to the macroscopic
shear plane, against the sense of shear. Thus it appears that a
significant activation of nonbasal systems is necessary for the
rotation of the fabric maximum. Under these conditions, ¢
axes turn away from the principal direction of compression
and toward the normal to the macroscopic shear plane. The
macroscopic rotation rate W predominates until this stable
position is reached.

Comparison With Fabrics in Polar Ice Sheets

Fabric formation in ice sheets is interpreted by the rotation
of crystallographic axes by slip as long as the nucleation of
grains and grain boundary migration are not significant. At
first approximation, this is the case in zones in which grain
growth or rotation recrystallization occurs.

Simulated fabrics are compared with fabrics along three
deep ice cores in Antarctica: Vostok at 915 m depth
[Lipenkov et al., 1989], Dome C at 850 m depth, and Byrd at
1570 m depth [Gow and Williamson, 1976]. Fabric patterns
are shown in Figure 12. In these diagrams the in situ vertical
direction corresponds to the center of the circle. Vostok and
Dome C samples are still within the grain growth zone. At
Byrd, grain growth stops at a depth of about 400 m, while
polygonization associated with rotation recrystallization
occurs until 1800 m [Alley et al., 1995].

According to Lipenkov et al. [1989], ice at Vostok Station
above a depth of 2083 m is deformed by horizontal extension.
The surface slope being smaller than 10, the horizontal shear
stress is not significant above this depth. The total
deformation of the Vostok ices can be estimated assuming a
uniform vertical strain rate along the core and a steady state
for the flow. Assuming an accumulation rate corresponding to
that of the last glacial period, we find that the equivalent
strain at 915 m should be around 0.4. The kinetics of fabric
development obtained with the self-consistent scheme
compares well with this estimation (Figure 8).

At Dome C, ice is deformed by vertical compression. In
Figure 12b, c axes are clearly concentrated around the vertical
direction. An equivalent strain of about 0.2 is found at a
depth of 850 m. In order to quantify the strengthening of
fabrics, we introduce the half apex angle 6 of a cone whose
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Figure 10. Relative activity of basal, prismatic, and pyramidal slip systems from VPSC (with and without
grain shape evolution) and Taylor models: (a) uniaxial extension, (b) uniaxial compression, and (c) simple

shear. The initial polycrystal was randomly oriented. Within the static model (not reported here), nonbasal

activity is always lower than 1%.

revolution axis coincides with the symmetry axis of fabrics
and that contains 50% of c¢ axes. The angle 6 =60° then
corresponds to an isotropic polycrystal. The half apex angle 6
of this Dome C fabric is 42°. Static, VPSC, and Taylor
models predict a fabric similarly concentrated for an
equivalent strain of 0.15, 0.2, and 0.45, respectively. In that
case, only the upper bound can be disregarded. It seems then
that the fabric evolution rate calculated with the lower bound
is too rapid for uniaxial deformation. On the other hand, the
upper bound seems to underestimate the ¢ axes’ rotation rate.
The best fit would be obtained with the self-consistent theory,
but for this low accumulated strain, such a result should be
considered carefully.

At Byrd Station, the vertical compression strain rate is
close to 2x1071257! | but because of the relatively important
surface slope (around 3x1073), the horizontal shear strain

rate should exceed 5x107!!s™! below a depth of 400 m
[Lliboutry and Duval, 1985]. Therefore simple shear can be
assumed to dominate along the 2164 m ice core. Only a lower
bound for the accumulated strain can be obtained at a depth
of 1570 m. With a mean value of the shear strain rate of
5x107Ms™! | the equivalent strain is higher than 10. The
fabric shown in Figure 12¢ for this depth shows that most ¢
axes have a nearly vertical orientation. This fabric is
consistent with that obtained with the VPSC and the Taylor
models for strain larger than 5. However, the intermediate
fabrics obtained with these models, at an equivalent strain of
0.4 (Figure 8), have never been observed in deep ice cores.
An attempt to simulate fabric evolution with a more
realistic in situ deformation history is presented in Figure 13.
With the VPSC model, we have imposed on an isotropic
polycrystal first a vertical compression and then a simple
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Figure 11. Development of ¢ axis fabric in simple shear: (a) static model, (b) VPSC scheme (spherical

grains), and (c) Taylor model. Fabrics are given for the initial polycrystal (random orientation), and after
equivalent strain of 0.5, 1, 2, and 5.

()

Figure 12. Patterns of c axis fabric for natural (Figures 12a to 12c) and artificial (Figures 12d and 12e) ices:
(a) Vostok, 915 m deep [Lipenkov et al., 1989]; (b) Dome C, 850 m deep; (c) Byrd, 1570 m deep [Gow and
Williamson, 1976]; (d) after a torsion test at -10°C, for shear strain of 0.6 and 2 [Bouchez and Duval, 1982];
and (e) after a compression test at -3°C, for an equivalent strain of 0.23 [Jacka and Maccagnan, 1984].
Equal-area projection. Center of diagrams in Figures 12a to 12c¢ corresponds to the in situ vertical direction.
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Figure 13. Polycrystal evolution simulated in simple shear with the VPSC model (spherical grains), where
the initial polycrystal presents a single maximum fabric. (a) Fabric pattern for the initial polycrystal, and after
an equivalent strain of 0.25, 0.5, 0.75, and 1. (b) Activity of basal, prismatic, and pyramidal systems.

shear. This deformation sequence should match natural
deformation history more closely. As we can see, the fabric
maximum, formed during the compression test, rotates
slightly away from its initial position during the shear
deformation, and the final fabric clearly compares well with
that obtained with an initially isotropic polycrystal. Due to the
slight disorientation of the fabric maximum, increasing
activity of nonbasal systems is required (Figure 13b).

Thus since an extensive activity of nonbasal systems is not
in accordance with observations of dislocations in ice, the
static, VPSC, and Taylor models are not able to reproduce
realistically simple shear fabrics observed in polar ices.
However, these comparisons are limited by the knowledge of
the real deformation history of natural ices.

Comparison With Laboratory Experiments

Conditions for fabric development by slip cannot easily be
reproduced in the laboratory. Indeed, to avoid excessively
long, drawn-out experiments, the level of stress is much
higher than that corresponding to in situ conditions, and the
temperature is generally higher than -10°C. Dynamic
recrystallization with a fast grain boundary migration rate is
therefore in most cases a predominant mechanism for fabric
development. A typical texture with coarse and interlocking
grains is usually observed [Duval, 1981].

Fabric development in torsion, under conditions for which
migration recrystallization was not readily occurring, was
analyzed by Bouchez and Duval [1982]. Three samples were
deformed for shear strain of 0.6, 0.95, and 2.0 (.e.,
equivalent strain of 0.35, 0.55, and 1.15, respectively).
Fabrics obtained for shear strain of 0.6 and 2 are shown

Figure 12d. The first fabric presents a bimodal distribution of
¢ axes. Two maximums are found, which are aligned with the
principal direction of compression and with the normal to the
macroscopic shear plane. With larger deformation, the first
maximum disappears, and most of the basal planes are
parallel to the shear plane. This final fabric is similar to that
obtained in ice sheets (see Figure 12c) and in shear zones in
glaciers [Huddleston, 1977]. This fabric development cannot
be obtained with the polycrystal models used here. The role
of dynamic recrystallization in the fabric development may be
invoked.

Comparison With Other Anisotropic Materials

Compared to other materials, the monocrystal of ice is
highly anisotropic. Basal slip provides only two independent
slip systems, which are not sufficient to satisfy overall
compatibility. =~ However,  fabric  development in
polycrystalline ice can be compared with that obtained with
other anisotropic materials. Particular attention should be
paid to the fabric found in simple shear. Our numerical
results show that the easiest slip plane is inclined to the
macroscopic shear plane. This is in contradiction with the
intuitive preconception widely held in glaciology and
geology. However, fabric development similar to that
calculated in this study has been found in quartzite [Wenk et
al., 1989a], in peridotite [Chastel et al., 1993; Wenk et al.,
1991], and in olivine [Ribe and Yu, 1991; Parks and Ahzi,
1990], as well as in a two-dimensional polycrystalline
aggregate with only one slip system [Zhang et al., 1994]. All
these studies were performed with polycrystal models in
which either the equilibrium conditions, or the compatibility
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conditions, or both, were fulfilled. A special fabric
development in simple shear was found by Etchecopar
[1977]. This evolution, in which the secondary maximum of
the initial bimodal distribution slowly disappears as
deformation proceeds, compares very well with that of
Bouchez and Duval [1982]. However, within the kinematic
polycrystal model of Etchecopar, where only one slip plane
has been introduced, very elongated grains are divided into
smaller grains in order to make the crystallographic rotation
possible.

Evolution of the Polycrystal Strength With
Deformation

Let us now compare the polycrystal response predicted by
all models as deformation proceeds._The evolution of the
normalized equivalent stress §eq / cu.Deq”3 is plotted against
the half apex angle 0 in Figure 14, for uniaxial deformation.
Increasing values of the half apex angle correspond to an
extension, and decreasing values correspond to a
compression. Furthermore, in uniaxial extension and
compression, symmetry axes of fabrics are also principal
directions of the macroscopic velocity gradient tensor. As a
result, the equivalent stress represents only axial stresses. A
general feature of Figure 14 is the increase of the equivalent
stress during the deformation. In uniaxial extension the static
model predicts a slightly harder polycrystal than the VPSC
model. In compression we found the opposite result.

In these calculations, changes in the polycrystal strength
with deformation are due only to changes in crystal
orientations and not to microstructural hardening. The
strength of the polycrystal largely depends on the activity of
slip systems. With the static model, since nonbasal systems
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Figure 14. Evolution of the normalized equivalent stress
with the half apex angle 6, for uniaxial deformation in
extension and compression.
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are not active, an important structural hardening appears
when the half apex angle 0 is close to 0° in compression and
to 90° in extension. With the self-consistent and Taylor
models, the increase of the polycrystal strength with
deformation is more significant in compression than in
extension. This dissymmetry is due only to the necessity of
activating pyramidal slip in compression. The normalized
stress S,/ G,.De” predicted by the Taylor model cannot
exceed 2.7 in compression and 1.3 in extension, i.e., the
corresponding hardening cannot exceed 273=20 and
133 =22, respectively. The evolution of polycrystal
behavior predicted by both VPSC and static models compares
well with results from mechanical tests on polar anisotropic
ices [Pimienta and Duval, 1987], where a normalized stress
of at least 2 has been found.

In simple shear, the evolution of the mechanical response
as deformation proceeds greatly depends on the models.
Indeed, fabric development presents large differences among
all models. Since grains rotate first toward hard orientations
for basal slip, the polycrystal strength increases. Predicted
structural hardening deduced from the VPSC model is of the
same order as that obtained in compression and extension.
The increase of the equivalent stress with deformation is due
to the increase of the activity of nonbasal systems.

Calculations in shear were also made for ices in which the
basal plane of all crystals is nearly parallel to the macroscopic
shear plane. For a fabric similar to that of the Byrd core at a
depth of 1570 m, the equivalent normalized stress predicted
with the VPSC model is about 0.45 (i.e., a softening of 11).
This result is close to that determined experimentally
[Pimienta and Duval, 1987). According to Castelnau and
Duval [1995], the normalized stress obtained with the lower
bound cannot be smaller than 0.6 (i.e., the softening cannot
exceed 4.4).

Discussion

We have applied a viscoplastic self-consistent approach to
simulate the development of the preferred lattice orientation
in ice and to predict the mechanical behavior of anisotropic
ices. Results have been compared with those derived from
lower and upper bounds. The input parameters for
calculations were determined from deformation data on ice
monocrystals and isotropic polycrystals. We have shown that
the VPSC model is the only one able to predict the
viscoplastic response of an isotropic polycrystal on both the
microscopic and the macroscopic scale. For large deformation
it has been found that natural fabrics obtained in uniaxial
extension and compression can be reproduced numerically.
The rate of development of fabrics is highly dependent on the
interaction relationship. However, the extent of the activity of
prismatic and pyramidal slip systems can be questioned. The
possibility of determining the dislocation structure in deep
Vostok ices should be studied. In simple shear it has been
found that the vertical single maximum fabric usually found
in deep polar ices (see Figure 12c) can be obtained
numerically only with an extensive activation of nonbasal
systems. Finally, in the last section, it has been shown that the
behavior of anisotropic ices is well described with the self-
consistent estimate.

We have shown that a continuous variation from lower
bound to upper bound can be obtained by tuning an
interaction coefficient (equation (48)). This coefficient «,
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introduced by Molinari and Téth [1994], represents the
interaction stiffness between grain and matrix.

According to Hutchinson [1977], the behavior of a
polycrystal of ice is well reproduced with an anisotropic
VPSC secant formulation taking t,=10t,and t,247,,
which differs slightly from results of the tangent formulation
used in this paper. Within the secant formulation, M is
replaced in (19) by M®?, According to (16), both approaches
lead to similar résults taking o=1/N =1/3 within the
tangent formulation, which has been verified numerically.
The secant formulation then lies between the tangent
formulation and the Taylor approximation. With the values of
RRSS given by relationship (46), the isotropic tangent VPSC
model of Molinari et al. [1987] predicts 6, /T, = 6. This low
value can be reproduced with the anisotropic model with
o = 3. This difference is attributed to the fact that within the
isotropic estimation, the strain rate D in the HEM is
assumed to be nearly proportional to the imposed strain rate
D. The polycrystal behavior calculated with isotropic and
anisotropic formulations differs by less than 10% only for
1, =T, <371, . From Téth et al. [1994], results of creep tests
a on an isotropic material (mixture of camphor and
octachloropropane) lie between tangent and secant
formulations of the isotropic VPSC model. A similar
conclusion has been given for the response, predicted by the
finite element method, of an isotropic spherical inclusion in
an isotropic HEM [Molinari and Téth, 1994]. Thus the
results obtained with the tangent anisotropic VPSC estimate,
presented in previous sections, must be taken only as a first
approximation of the real polycrystal response.

The introduction of the interaction coefficient o is valid
for small deformation. However, real static (from equation
(8)) and VPSC estimates with & > 100 do not lead to similar
fabric evolution rate, since the rotation rate w° of the
associated ellipsoid (equation (23)) is not negligible. Thus a
new formulation for this interaction term must be found.

Muguruma [1969] has shown that the surface roughness of
a monocrystal significantly influences its mechanical
behavior. This is attributed to the possibility for the surface to
produce dislocations. Similarly, the dislocation production
rate should differ from a free surface and a grain boundary.
Thus a reference to the mechanical response of an isolated
crystal for the determination of the relative resistance of slip
systems of grains within a polycrystal should be reconsidered.
For conditions prevailing in ice sheets (deviatoric stress lower
than 0.1 MPa), the expected quasi-Newtonian viscosity would
result from a constant dislocation density [Duval et al.,
1983].

Simulations with the self-consistent model were performed
with and without the evolution of the grain shape. It was
found that the final fabric pattern is qualitatively similar.
However, distorted grain shape slows down the rotation rate
of ¢ axes, though this effect is significant only after an
equivalent strain of about 0.3, i.e. for an aspect ratio of grains
of at least 1.5. In polar ice sheets, very elongated grains are
found only in ices with a very high impurity content. In pure
ice a large elongation is impeded by the effects of grain
boundary migration. In the GRIP ices (central Greenland), the
aspect ratio of grains ranges between 1.2 and 1.7 for depth
between 400 m and 2800 m, with an average value of 1.35 [T.
Thorsteinsson, personal communication, 1995]. In the Vostok
ices, a mean aspect ratio of about 1.5 is observed [Lipenkov et
al., 1989]. For a realistic simulation, grain shape effects
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should be taken into account when the grain boundary
migration rate is relatively low.

Deformation by slip and recrystallization are closely linked
in polar ices. Both mechanisms influence fabric development
[Alley, 1992]. When only grain growth occurs, strain energy
is low compared with grain boundary surface energy, and
fabrics induced by intracrystalline slip strengthen with depth
[Lipenkov et al., 1989]. There is therefore no correlation
between grain size and crystal orientation. This
recrystallization processes should influence the polycrystal
behavior and the kinetic of fabric formation only by relaxing
the field of internal stress, to make the stress more uniform
within the polycrystal.

With rotation recrystallization, fabric is essentially the
result of lattice rotation by dislocation glide. However, the
grain boundary migration, the progressive disorientation of
subboundaries, and the nucleation of new strain-free grains
can be mechanisms which alter the fabric development. The
progressive misorientation of subboundaries tends to produce
less concentrated fabrics [Castelnau et al., 1996]. Nucleation
occurs in grains where there is a curvature of the lattice by
bending moments. From Wilson [1986], kink bands form in
grains oriented with their basal plane more or less parallel to
the shortening direction. According to Figure 6, grains badly
oriented for basal glide are more stressed. Due to the
interaction between neighbor grains, the deformation of these
grains must be very heterogeneous [Wilson and Zhang,
1994]. Moreover, the subgrain size is inversely proportional
to the the applied stress [Poirier, 1985]. Thus badly oriented
grains should contain more subboundaries and smaller
subgrains. These grains should have a high level of stored
energy, associated with a large amount of subboundaries.
Thus grains well oriented for basal slip are favored for
growth. However, this mechanism is progressive, since the
misorientation between new and parent grains is typically 15°
[Poirier, 1985]. On the other hand, owing to the low grain
boundary migration rate, rotation recrystallization is generally
not enough efficient to control fabric development [Duval
and Castelnau, 1995]. A special case is found for simple
shear [Kamb, 1972; Bouchez and Duval, 1982]. As was
shown previously, the fabric development simulated in
simple shear does not match observations on natural ices. A
possibility is that due to the relatively large shear rate, as is
usually found in the deeper parts of ice sheets, the stored
strain energy contributes significantly to the total driving
force for grain boundary migration. The preferential growth
of grains well oriented for basal glide (i. e., with a vertical ¢
axis) could be associated with lattice rotation by slip to
produce the vertical single maximum usually observed in ice
sheets.

When migration recrystallization occurs, the grain
boundary migration rate is about 2 orders of magnitude
higher than during grain growth and rotation recrystallization.
A complete recrystallization cycle is obtained for a strain
between 3% and 5% [Steineman, 1954]. As a result, the
fabric reflects the instantaneous stress state and not the
kinematic framework. Migration recrystallization produces
fabrics favorable to basal slip [Duval, 1981]. This effect is
clearly illustrated in compression and extension. In the
laboratory experiments of Jacka and Maccagnan [1984], ice
samples deformed at -3°C in compression develop circle
girdle fabrics around the compression axis (Figure 12e). The
mean half angle of fabrics depends on the accumulated strain
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but is generally close to 30°. With these fabric patterns,
grains are well oriented for basal glide. A structural
hardening, associated with ¢ axes close to the compression
axis, is then obtained only when this recrystallization regime
is not dominant. Typical fabrics induced by migration
recrystallization are found in temperate glaciers and in polar
ice sheets near the bedrock [Gow and Williamson, 1976;
Vallon et al., 1976].

In this study, large differences between predictions of both
lower and upper bounds and the VPSC theory were obtained.
The introduction in the VPSC model of the nucleation of
grains and of grain boundary migration associated with grain
growth, rotation  recrystallization, and  migration
recrystallization should greatly improve simulations for fabric
development in polar ices. The interaction between the
inclusion and the HEM can be modulated by a tuning
parameter to take into account the accommodation of slip by
the grain boundary migration. This possibility will be
investigated to improve the simulation of fabric development
in polar ices.
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